HORMONAL REGULATION OF RAT LEYDIG CELL CYTOCHROME P-450 $_{17\alpha}$ mrna levels and characterization of a partial Length rat P-450 $_{17\alpha}$ cDNA

Marie Nishihara¹, Christine A. Winters¹, Ellen Buzko¹
Michael R. Waterman² and Maria L. Dufau¹

¹Section on Molecular Endocrinology, Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health,

Bethesda, Maryland

²Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas

Received May 23, 1988

Summary: We have isolated and characterized a P-450 $_{17\alpha}$ cDNA fragment from a rat testis library. The partial length rat P-450 $_{17\alpha}$ cDNA (1Kb) has high overall nucleotide and deduced amino acid similarity with human and bovine P-450 $_{17\alpha}$ cDNA's and contains the conserved tridecapeptide and heme regions, the termination codon and polyadenylation site. Using this rat testis cDNA probe we measured P-450 $_{17\alpha}$ mRNA levels of rat Leydig cells from animals treated with hCG. Temporal studies with a low hCG dose showed an early increase in mRNA levels returning to control values at later times, while a higher desensitizing dose caused a marked reduction in the mRNA (24 h) and a small recovery at 48 h. Fetal rat Leydig cells maintained in the presence of LH treated with estradiol showed a 70% decrease in P-450 $_{17\alpha}$ mRNA levels and testosterone production followed closely the changes in P-450 $_{17\alpha}$ mRNA. These studies suggest that gonadotropin stimulation and desensitization of P-450 $_{17\alpha}$ dependent enzymes in the adult rat testis as well as estradiol induced desensitization in fetal Leydig cells are related to levels P-450 $_{17\alpha}$ mRNA.

The episodic secretion of luteinizing hormone (LH)³ supports the steroidogenic function of the Leydig cell through interaction with LH receptors on the cell surface, and subsequent stimulation of cyclic AMP dependent events. In addition to the positive regulation of membrane receptors and steroidogenesis caused by physiological increases in endogenous hormone, major elevations in circulating gonadotropin can cause down-regulation of homologous LH receptors and desensitization of steroid responses in the target cell (1).

The regulation of steroidogenesis by LH/hCG in the adult rat [2-4] has been shown to include a prominent estrogen mediated steroidogenic lesion at the site of conversion of

Abbreviations: hCG, human chorionic gonadotropin; LH, luteinizing hormone; E_2 , estradiol-17B; P-450_{17 α}, 17 α -hydroxylase cytochrome P-450, the product of P450XVII gene (13).

^{*}Send correspondence to: Dr. M. L. Dufau, NIH, Bldg. 10, Bethesda, Maryland 20892

progesterone to androgen [4] leading to a decreased testosterone response to hCG in vitro [1-4]. Desensitization of steroidogenic enzymes of the androgen pathway $(17\alpha-\text{hydroxylase}/17,20-\text{desmolase})$ was found to be preceded by a cAMP mediated-activation of aromatase activity with increased estrogen production [5] and estradiol receptor mediated responses including the synthesis of a 27,000 Mr protein [6-8]. The similarity of estrogen lesions to those produced by gonadotropin treatment have indicated involvement of endogenous estrogen in the development of microsomal enzymatic lesions (4).

The inability of fetal and immature Leydig cells to be desensitized by gonadotropin [9,10], a characteristic of the adult cell [1-8], is attributed to low aromatase activity with lack of consequent receptor-mediated estrogen regulation [11,12]. Estradiol (E₂) treatment of functional fetal Leydig cell cultures caused induction of a steroidogenic lesion resembling that observed in gonadotropin desensitized adult Leydig cells, with reduction of the microsomal enzyme activities 17α -hydroxylase/17,20 desmolase that resulted in decreased androgen production [12]. It was of immediate interest to assess whether hormonal modulatory actions related to changes in P-450_{17 α} mRNA levels could account for steroidogenic stimulation and desensitization. For this study we have characterized and identified a partial length rat P-450_{17 α} cDNA clone. The 1 Kb cDNA insert, displaying high similarity with the previously isolated P-450_{17 α} cDNA structures from human (14,15), bovine (16) and porcine (14) species, was employed to evaluate the hormonal regulation of mRNA levels in adult and fetal Leydig cells.

EXPERIMENTAL PROCEDURES

Leydig cells were prepared by collagenase dispersion of testes from control and hCG treated (subcutaneous $0.2\text{--}10~\mu\text{g}$) adult 50 day old male rats as previously described (17). For testosterone production, 10^6 Leydig cells were incubated in suspension for 3 h at 35 C in the presence or absence of 100 ng hCG. Testosterone in the media analyzed by immunoassay (1). Studies in cultured fetal Leydig cells were performed with cells from 20.5 day fetuses prepared as previously described (12). Treatment of fetal cell cultures with ovine LH (1 μ g) every third day (with media change) was previously found to be optimal to maintain steroidogenic function without induction of the desensitization observed in the adult cells (12). Cultures maintained in the presence of LH were also treated with E₂ (600 ng/day), to induce steroidogenic desensitization in fetal cells similar to that observed in adult cells (12). At the end of the culture period media was removed and total RNA from Leydig cells was prepared as described below. In parallel wells, cells were incubated with or without hCG (100 ng/ml) for an additional 3 h to monitor acute maximal testosterone responses to hCG (2-4).

Total RNA was prepared from different tissues (bovine, rat adrenal, rat spleen and from adult and fetal Leydig cells) as described by Chirgwin et al. (18). Poly(A)⁺ RNA was separated from rRNA with oligo (dT)-cellulose. For Northern blot analysis, $10-20~\mu g$ of poly (A)⁺ RNA was denatured with glyoxal, resolved in a 1% agarose gel and subsequently RNA was transferred to nylon filters (19). Also, Poly A⁺ mRNA (0.2-2 μg) or total RNA (10 μg) were loaded on slot blot followed by hybridization and quantitation of signals by densitometry of X ray film and counting of filters, the latter correlated well with values obtained by direct desitometric reading. Significance of changes were obtained from slot blots by paired T-test and sign test.

Bovine and rat P-450_{17 α} cDNA fragments were nick translated using α [32 P]dCTP and a nick-translation kit (New England Nuclear, Cambridge, MA). Hybridizations to bovine and rat P-450_{17 α} were performed as described by Church and Gilbert (20). Subsequent hybridization to an actin probe (21), (kindly provided by Dr. Narayana Battula, NCI, Bethesda, MD), was performed on the same filters. A rat testis λ gt 11 cDNA library (Clontech Laboratories, Inc., CA) was used to isolate rat P-450_{17 α} cDNA. The nicked-translated bovine P-450_{17 α} (Pst I-Pst I, 1.2 Kb) restriction fragment (15) was employed to screen the rat testis cDNA library Southern blot analysis of plaque-purified phage, digested by Eco R1, showed a 1 Kb cDNA

insert upon hybridization with ^{32}P labeled bovine P-450_{17 α} cDNA Pst I restriction fragment. The positive cDNA fragment was digested by several restriction enzymes, subcloned into M13mp18 and M13mp19 and used to transform E coli strains JM101. Sequencing of restriction fragments was performed by dideoxy chain termination sequencing (22).

RESULTS AND DISCUSSION

Northern blot analysis of rat Leydig cell mRNA using rat P-450_{17 α} probe revealed a single 1.9 Kb mRNA species. The rat testis probe hybridized less effectively with P-450_{17 α} mRNA of bovine adrenal while no hybridization was observed to the rat adrenal consistent with the known absence of P-450_{17 α} enzyme activity in this tissue (Fig. 1, A).

Restriction enzyme mapping (Fig. 1, B) and nucleotide sequence analysis were performed to characterize the 1 Kb P-450_{17 α} DNA fragment. This insert contains an open reading frame of 720 bases, a termination codon and 149 bases of the 3' untranslated region. The nucleotide and amino acid sequences exhibit considerable overall similarity with that from human, 79 and 75% (14,15), bovine, 73 and 68% (16) and porcine (14) species, (Fig. 2). Computer alignment of the rat testis P-450_{17 α} DNA fragment with the human P-450_{17 α} cDNA verifies the presence of the heme-binding region (where 20 out of 21 amino acids are identical), the conserved tridecapeptide region (24) associate with all cytochromes P-450 and the termination codon. Similarity begins at amino acid position 291 of the human P-450_{17 α} and continues to the termination codon at amino acid 509. The rat P-450_{17 α} polyadenosine addition signal (ATAAA) residing 136 bases 3' from the stop codon was aligned to the human P-450_{17 α} polyadenosine signal (14). This alignment was achieved with the introduction of three gaps; between positions 752-753 (two bases), 814 and 815 (3 bases), and 817-818 (10 bases) (Fig. 2, Table 1).

In previous studies we have shown that treatment <u>in vivo</u> with a single high dose of hCG caused desensitization of microsomal 17α -hydroxylase/17-20 desmolase activities leading to decreased testosterone response to gonadotropin stimulation <u>in vitro</u> (2-4), while lower doses caused no changes or even stimulation of androgen production. Thus it is of immediate interest to determine the modulatory influences of gonadotropin on P-450_{17 α} mRNA levels. Treatment with 10 μ g hCG appears to cause an initial modest but significant stimulation of mRNA levels

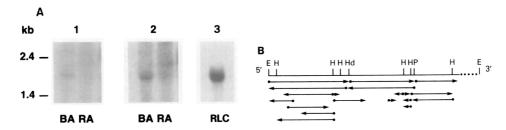


Fig. 1. A. Hybridization of poly (A)+ mRNA from testis, bovine and rat adrenal with rat P-450_{17α} probe, 20μg of poly (A)-enriched mRNA from rat Leydig cell (RLC), bovine adrenal (BA) and rat adrenal (RA) were electrophoresed and hybridized to nick translated rat P-450_{17α} cDNA probe at 55 °C in 0.5M NaH₂ PO₄ (pH 7.0), 1 mM EDTA, 7% SDS, 0.5% BSA buffer and washed with 0.5% BSA, 5% SDS, 100 mM NaH₂ PO₄, 1 mM EDTA at 65 °C. Autoradiographs were developed at 16 hours (1) and 36 hours (2) and 5 hours (3). Fig. 1. B. Restriction Map for rat testes P450_{17α} insert. Arrows indicate the direction and extent of sequence analysis. Restriction enzymes are as follows: E= EcoR I; Hd=Hind II; P=Pst I; H=Hae III,

200

271

at 3 h (p<0.05) followed by a reduction at 6 h that continues to decline at 12 h and to near undetectable levels at 24 h with a small observable recovery at 48 h (Fig. 3-left). The expected marked reductions of testosterone production in vitro (1-6, 17) were observed with gonadotropin treatment (not shown). In contrast, administration of a non-desensitizing dose of hCG (0.2 μ g) showed an increase in mRNA levels at 12 h (p<0.05) while at 24 and 48 h levels returned to near control values (Fig. 3-right). It is possible that the lack of a sustained

280

	271									280										290
pAA																	Leu		-	_
hΑA								Ala												
hADNA		AAC		GAT	AAT	GGC	AAT	GCT					GAT					T CA		AAC
ЬАА			Ala					Ala *	Gly *	Pro *	Asp *	GIn *		Ser *	Lys *	Leu *	Leu *		Asn *	
			_			*												O		* -
rTAA								Ser												
rTDNA	−G 291	AAT	Į CA	GAU	AAL	AAC	AAC	AGC	161	300	GGC	CUG	UAL	CCA	GAI	GIG	111	1 CA	GAI	310
pAA	291									300		Δla	Cys	Val	Glu	Thr	Ser	Val	Sor	
hAA	Hie	Tla	Lou	Thr	Thr	Tle	Clv	Asp	TIA	Phe	Glv									
hADNA								GAC												
bAA	Orio	Met	010	1100	1100	Ile	000	GHO	111 0		.,,,,	001	000	Val	0110	1100			Ser	0.0
				*		*								*					*	
rTAA	His	Ile	Leu	A1a	Thr	Val	Gly	Asp	Ile	Phe	Gly	Ala	Gly	Ile	Glu	Thr	Thr	Thr	Thr	Va1
rTDNA								GAC												
	311									320										330
pAA	Phe	Ile	Trp															Ile	Gln	Glu
hAA	Va1	Lys	Trp	Thr	Leu	Ala	Phe	Leu	Leu	His	Asn	Pro	Gln	Val	Lys	Lys	Lys	Leu	Tyr	Glu
hADNA	GTT	AAA	TGC	ACC	CTC	GCC	TTC	CTG	CTG	CAC		CCT	CAG	GTG	AAG	AAG	AAG	CTC	TAC	GAG
ЬАА	Ile				Val		Tyr		Leu		His		Ser	Leu			Arg			Asp
	*			*					*			_	*		_	_	_	*	*	*
rTAA								Leu												
rTDNA		AAG	TGG	ATC	CIG	GCT	TTC	CTG	GTG		AAT	CCT	GAG	GTG	AAG	AAG	AAG	ATC	CAA	
	331	* 1	0.1	01	.	T1-	01	nt.		340	A 1 -	n	C	T1.	C	A	A	4	C1-	350
pAA								Phe Phe												
hAA								TTC		-									_	
hADNA bAA	Asp	HII	GAC	CAG		Ile	001	110	Asn	CGC	AUA	CCA	NOI		Ser	Onc	COI	Asn		010
D141					*									*	*			*	*	
	G1u	Ile	Asp	G1n		Val	Gly	Phe	Ser	Arg	Thr	Pro	Thr			Asp	Arg		* His	Leu
rTAA rTDNA					Tyr			Phe TTC						Phe	Asn			Ser		
rTAA					Tyr									Phe	Asn			Ser		
rTAA	GAG 351 Val	ATT Leu	GAC Leu	CAG Glu	Tyr TAC Ala	GTA Thr	CGC Ile	TTC	AGC Glu	CGA 360 Val	A CA Leu	CCA Arg	ACT Phe	Phe TTC	Asn AAT Pro	GAC Val	CGG Ser	Ser TCT Pro	CAC Thr	370 Leu
rTAA rTDNA pAA hAA	GAG 351 Val Leu	ATT Leu Leu	GAC Leu Leu	CAG Glu Glu	Tyr TAC Ala Ala	GTA Thr Thr	CGC Ile Ile	TTC Arg Arg	AGC Glu Glu	CGA 360 Val Val	ACA Leu Leu	CCA Arg Arg	ACT Phe Leu	Phe TTC Arg Arg	Asn AAT Pro Pro	Val Val	Ser Ala	Ser TCT Pro Pro	Thr Met	370 Leu Leu
rTAA rTDNA pAA hAA hADNA	GAG 351 Val Leu CTC	ATT Leu Leu CTG	GAC Leu Leu	CAG Glu Glu	Tyr TAC Ala Ala	GTA Thr Thr	CGC Ile Ile	TTC	AGC Glu Glu	CGA 360 Val Val	ACA Leu Leu	CCA Arg Arg	ACT Phe Leu	Phe TTC Arg Arg	Asn AAT Pro Pro	Val Val	Ser Ala	Ser TCT Pro Pro	Thr Met ATG	370 Leu Leu
rTAA rTDNA pAA hAA	GAG 351 Val Leu CTC	Leu Leu CTG Leu	GAC Leu Leu	CAG Glu Glu	Tyr TAC Ala Ala	GTA Thr Thr	CGC Ile Ile	TTC Arg Arg	AGC Glu Glu	CGA 360 Val Val	ACA Leu Leu	CCA Arg Arg	ACT Phe Leu CTC	Phe TTC Arg Arg	Asn AAT Pro Pro	Val Val	Ser Ala	Ser TCT Pro Pro	Thr Met	370 Leu Leu
rTAA rTDNA pAA hAA hADNA bAA	GAG 351 Val Leu CTC Val	Leu Leu CTG Leu *	CAC Leu Leu CTG	Glu Glu GAG	Tyr TAC Ala Ala GCC	Thr Thr ACC	Ile Ile ATC	Arg Arg CGA	AGC Glu Glu GAG	CGA 360 Val Val GTG	ACA Leu Leu CTT	Arg Arg OGC	ACT Phe Leu CTC	Phe TTC Arg Arg	Asn AAT Pro Pro CCC	Val Val CTC	Ser Ala GCC	Ser TCT Pro Pro CCT	Thr Met ATG Thr	370 Leu Leu CTC
rTAA rTDNA pAA hAA hADNA bAA rTAA	GAC 351 Val Leu CTC Val	Leu Leu CTG Leu *	CAC Leu Leu CTG	Glu Glu GAG	Tyr TAC Ala Ala GCC	Thr Thr ACC	Ile ATC	Arg Arg CGA	Glu Glu GAG	CGA 360 Val Val GTG	ACA Leu Leu CTT	Arg Arg OGC	Phe Leu CTC	Phe TTC Arg Arg AGG	Asn AAT Pro Pro CCC	Val Val GTG	Ser Ala CCC	Ser TCT Pro Pro CCT	Thr Met ATG Thr	370 Leu Leu CTC
rTAA rTDNA pAA hAA hADNA bAA	GAG 351 Val Leu CTC Val Leu CTC	Leu Leu CTG Leu *	CAC Leu Leu CTG	Glu Glu GAG	Tyr TAC Ala Ala GCC	Thr Thr ACC	Ile ATC	Arg Arg CGA	Glu Glu GAG	CCA 360 Val Val GTG Val	ACA Leu CTT Leu CTG	Arg Arg OGC	Phe Leu CTC *	Phe TTC Arg Arg AGG	Asn AAT Pro Pro CCC	Val Val GTG	Ser Ala CCC	Ser TCT Pro Pro CCT	Thr Met ATG Thr	370 Leu Leu CTC
rTAA rTDNA pAA hAA hADNA bAA rTAA rTDNA	GAG 351 Val Leu CTC Val Leu CTC 371	Leu Leu CTG Leu * Met	Leu CTG	Glu Glu GAG GAG	Tyr TAC Ala Ala GCC	Thr Thr ACC	Ile ATC	Arg Arg CGA Arg	Glu Glu GAG Glu GAA	CGA 360 Val Val GTG Val GTG	Leu CTT Leu CTG	Arg Arg OGC	Phe Leu CTC * Ile ATC	Phe TTC Arg Arg AGG	Asn AAT Pro CCC Pro	Val Val GTG Val GTG	Ser Ala GCC	Ser TCT Pro Pro CCT Pro	Thr Met ATG Thr Met ATG	TC 370 Leu Leu CTC Leu CTC 390
PAA PAA HAA HAA HADNA BAA TTAA TTDNA PAA	GAG 351 Val Leu CTC Val Leu CTC 371 Ile	Leu Leu CTG Leu * Met ATG	Leu Leu CTG	Glu Glu GAG Glu GAG	Tyr TAC Ala Ala GCC Ala GCC	Thr Thr ACC Thr ACT	Ile ATC	Arg Arg CGA Arg CGA	Glu Glu GAG Glu GAA	CGA 360 Val Val GTG Val GTG Ser	Leu CTT Leu CTG	Arg Arg OGC	Phe Leu CTC * Ile ATC	Phe TTC Arg Arg AGG	Asn AAT Pro CCC Pro CCG	Val Val CTC Val GTG	Ser Ala GCC Ala GCT	Ser TCT Pro CCT Pro CCC	Thr Met ATG Thr Met ATG	CTC 370 Leu Leu CTC Leu CTC 390 Thr
rTAA rTDNA pAA hAA hADNA bAA rTAA rTDNA pAA hAA	GAG 351 Val Leu CTC Val Leu CTC 371 Ile Ile	Leu Leu CTG Leu * Met ATG	Leu Leu CTG Leu CTG	Glu Glu GAG Glu GAG Arg Lys	Tyr TAC Ala Ala GCC Ala GCC	Thr ACC Thr ACT Ile Asn	Ile ATC	Arg Arg CGA Arg CGA	Glu Glu GAG Glu GAA Ser Ser	CGA 360 Val Val GTG Val GTG Ser Ser	Leu CTT Leu CTG	Arg Arg OCC Arg CGT	Phe Leu CTC * Ile ATC	Phe TTC Arg Arg AGG Arg AGG	Asn AAT Pro CCC Pro CCG	Val Val CTC Val GTG	Ser Ala CCC Ala GCT Asp	Ser TCT Pro CCT Pro CCC Lys Lys	Thr Met ATG Thr Met ATG Ala Gly	CTC 370 Leu Leu CTC 390 Thr
PAA PAA HAA HAA HADNA BAA TTAA TTDNA PAA	GAG 351 Val Leu CTC Val Leu CTC 371 Ile Ile	Leu Leu CTG Leu * Met ATG	Leu Leu CTG Leu CTG	Glu Glu GAG Glu GAG Arg Lys	Tyr TAC Ala Ala GCC Ala GCC	Thr ACC Thr ACT Ile Asn AAC	Ile ATC	Arg Arg CGA Arg CGA	Glu Glu GAG Glu GAA Ser Ser	CGA 360 Val Val GTG Val GTG Ser Ser	Leu CTT Leu CTG	Arg Arg OCC Arg CGT	Phe Leu CTC * Ile ATC Glu Glu GAG	Phe TTC Arg Arg AGG Arg AGG	Asn AAT Pro CCC Pro CCG	Val Val GTG Val GTG Ile Val GTG	Ser Ala CCC Ala GCT Asp	Ser TCT Pro CCT Pro CCC Lys Lys	Thr Met ATG Thr Met ATG Ala Gly	CTC 370 Leu Leu CTC 390 Thr
rTAA rTDNA pAA hAA hADNA bAA rTAA rTDNA pAA hAA hADNA	CAC 351 Val Leu CTC Val Leu CTC 371 Ile Ile ATC	Leu Leu CTG Leu * Met ATG Pro CCC	Leu CTG Leu CTG His His	Glu Glu GAG GIu GAG Arg Lys AAG	Tyr TAC Ala Ala GCC Ala GCC	Thr ACC Thr ACT Ile Asn AAC Val	Ile ATC Ile ATC Ile ATC Ile ATC Ile ATC	Arg Arg CGA Arg CGA Asp Asp GAC	Glu Glu GAG Glu GAA Ser Ser TCC	CCA 360 Val Val GTG Val GTG Ser Ser AGC	Leu CTT Leu CTG Ile Ile ATC	Arg Arg OGC Arg CGT Gly Gly GGT	Phe Leu CIC * Ile ATC Glu GAG Asp	Phe TTC Arg Arg AGG Phe TTT Leu	Asn AAT Pro CCC Pro CCG Thr Ala GCT	Val Val CTC Val GTG Ile Val GTG Ile	Ser Ala CCC Ala GCT Asp GAC Asp	Ser TCT Pro CCT Pro CCC Lys Lys AAG	Thr Met ATG Thr Met ATG Ala Gly GGC Gly	CTC 370 Leu Leu CTC CTC Thr ACA
rTAA rTDNA pAA hAA hADNA bAA rTAA rTDNA pAA hAA hADNA	GAG 351 Val Leu CTC Val Leu CTC 371 Ile ATC	Leu Leu CTG Leu * Met ATG Pro CCC	Leu CTG Leu CTG His His CAC	Glu Glu GAG Glu GAG Arg Lys AAG	Tyr TAC Ala Ala GCC Ala Ala GCC	Thr Thr ACC Thr ACT Ile Asn AAC Val	Ile ATC Ile ATC Ile ATC Ile Yal GTT Ile Val	Arg Arg CGA Arg CGA Asp GAC	Glu Glu GAG Glu GAA Ser TCC	CCA 360 Val Val GTG Val GTG Ser Ser AGC	Leu CTT Leu CTG Ile Ile ATC	Arg Arg OCC Arg CGT Gly Gly GGT	Phe Leu CTC * Ile ATC Glu GAG Asp Glu	Phe TTC Arg Arg AGG Arg AGG Phe TTT Leu Phe	Asn AAT Pro CCC Pro CCC Thr Ala GCT * Thr	Val Val GTG Val GTG Ile Val GTG Ile	Ser Ala GCC Ala GCT Asp GAC Asp Fro	Ser TCT Pro CCT Pro CCC Lys AAG	Thr Met ATG Thr Met ATG Ala Gly GGC Gly * Asp	CTC 370 Leu Leu CTC 390 Thr Thr ACA
rTAA rTDNA pAA hAA hADNA bAA rTAA rTDNA pAA hADNA bAA	GAC 351 Val Leu CTC 371 Ile ATC	Leu Leu CTG Leu * Met ATG Pro CCC	Leu CTG Leu CTG His His CAC	Glu Glu GAG Glu GAG Arg Lys AAG	Tyr TAC Ala Ala GCC Ala Ala GCC	Thr Thr ACC Thr ACT Ile Asn AAC Val	Ile ATC Ile ATC Ile ATC Ile Yal GTT Ile Val	Arg Arg CGA Arg CGA Asp Asp GAC	Glu Glu GAG Glu GAA Ser TCC	CCA 360 Val Val GTG Val GTG Ser AGC	Leu CTT Leu CTG Ile Ile ATC	Arg Arg OCC Arg CGT Gly Gly GGT	Phe Leu CTC * Ile ATC Glu GAG Asp Glu	Phe TTC Arg Arg AGG Arg AGG Phe TTT Leu Phe	Asn AAT Pro CCC Pro CCC Thr Ala GCT * Thr	Val Val GTG Val GTG Ile Val GTG Ile	Ser Ala GCC Ala GCT Asp GAC Asp *	Ser TCT Pro CCT Pro CCC Lys AAG	Thr Met ATG Thr Met ATG Ala Gly GGC Gly * Asp	CTC 370 Leu Leu CTC 390 Thr ACA
rTAA rTDNA pAA hAA hADNA bAA rTAA rTDNA pAA hAA hADNA bAA rTAA rTDNA	GAC 351 Val Leu CTC Val Leu CTC 371 Ile ATC 391	ATT Leu Leu CTG Leu * Met ATG Pro CCC	Leu CTG Leu CTG His His CAC	Glu GAG Glu GAG Glu GAG Lys AAG Lys AAG	Tyr TAC Ala Ala GCC Ala GCC Ala GCC Ala GCC	Thr ACC Thr ACT Ile Asn AAC Val Asn AAC	Ile ATC Ile ATC Ile ATC Val GTT Ile Val	Arg CGA Arg CGA Asp GAC	AGC Glu Glu GAG Glu GAA Ser TCC Ser TCC	CGA 360 Val Val GTG Val GTG Ser AGC 400	Leu CTT Leu CTG Ile ATC	Arg Arg CGT Gly GGT Gly GGA	Phe Leu CTC * Ile ATC Glu GAG Asp Glu GAG	Phe TTC Arg Arg Acc Arg AGG Phe TTT Leu Phe TTT	Asn AAT Pro CCC Pro CCC Thr Ala GCT * Thr ACT	Value CTC Value CTC Value CTC Value CTC Value CTC Value CTC	Ser Ala GCC Ala GCT Asp Asp GAC Asp * Pro CCC	Ser TCT Pro CCT Pro CCC Lys Lys AAG	Thr Met ATG Thr Met ATG Ala Gly GGC Gly * Asp GAC	CTC 370 Leu Leu CTC 390 Thr Thr ACA 410
rTAA rTDNA pAA hAA hADNA bAA rTAA rTDNA pAA hADNA bAA rTAA rTDNA pAA	GAG 351 Val Leu CTC Val Leu CTC 371 Ile ATC 391 Asp	Leu Leu CTG Leu * Met ATG Pro CCC Val	Leu CTG Leu CTG His His CAC	Glu GAG Glu GAG Glu GAG Lys AAG Val	Tyr TAC Ala Ala GCC Ala GCC Ala GCC Ser	Thr Thr ACC Thr ACT Ile Asn AAC Val Asn AAC	Ile ATC Ile ATC Ile ATC Ile ATC Ile CTT Ile Val GTT Ile CTC Phe	Arg CGA Arg CGA Asp GAC Asp GAC	Glu GAA Glu GAA Ser TCC Ser TCC Leu	CGA 360 Val Val GTG Ser Ser AGC 400 His	Leu CTT Leu CTG Ile ATC Ile ATT	Arg CGT Gly GGT Gly GGA Asn	Phe Leu CTC * Ile ATC Glu GAG Asp Glu GAG GSG Glu GAG	Phe TTC Arg AGG Arg AGG Phe Phe TTT Leu Phe TTT Lys	Asn AAT Pro CCC Pro CCC Thr Ala GCT * Thr ACT Glu	Value of the value	Ser Ala CCC Ala GCT Asp GAC Asp * Pro CCC	Ser TCT Pro Pro CCT Pro CCC Lys Lys AAG Arg	Thr Met ATG Thr Met ATG Gly GGC Gly * Asp GAC	CTC 370 Leu Leu CTC Leu CTC 390 Thr ACA 410 Asp
rTAA rTDNA pAA hADNA bAA rTAA rTDNA pAA hADNA bAA rTAA rTDNA pAA hADNA bAA	GAG 351 Val Leu CTC Val Leu CTC 371 Ile ATC ATC ATC ASp Glu	Leu Leu CTG Leu * Met ATG Pro CCC Val Val	Leu CTG Leu CTG His CAC Wal Ile	Glu GAG Glu GAG Glu GAG Lys AAG Lys AAG Val	Tyr TACC Ala Ala GCC Ala GCC Ala GCC Ala GCC Ser Asn	Thr Thr ACC Thr ACT Ile Asn AAC Val Asn AAC Leu Leu	Ile ATC Ile ATC Ile ATC Ile ATC Ile Yal GTT Ile Trp	Arg CGA Arg CGA Asp GAC Asp GAC	Glu GAG Glu GAA Ser TCC Ser TCC Leu Leu	CGA 360 Val Val GTG Val GTG Ser AGC 400 His	Leu CTT Leu CTG Ile ATC Ile ATC	Arg Arg CGT Gly GGT Gly GGA Asn Asn	Phe Leu CTC * Ile ATC Glu GAG Asp Glu GAG GSU GGU GGU	Phe TTC Arg AGG Arg AGG Phe Phe TTT Leu Phe TTT Lys Lys	Asn AAT Pro CCC Pro CCC Thr Ala GCT * Thr ACT Glu Glu	Value of the value	Ser Ala CCC Ala GCT Asp GAC Asp * Pro CCC His His	Ser TCT Pro Pro CCT Pro CCC Lys Lys AAG Arg Gln	Thr Met ATG Thr Met ATG Gly GGC Gly * Asp GAC Pro	CTC 370 Leu Leu CTC Thr ACA Thr ACA 410 Asp
rTAA rTDNA pAA hAA hAANA bAA rTAA rTDNA pAA hAADNA bAA rTAA rTDNA	GAG 351 Val Leu CTC Val Leu CTC 371 Ile ATC 391 Asp Glu GAA	Leu Leu CTG Leu * Met ATG Pro CCC Val Val	Leu CTG Leu CTG His CAC Wal Ile	Glu GAG Glu GAG Glu GAG Lys AAG Lys AAG Val	Tyr TACC Ala Ala GCC Ala GCC Ala GCC Ala GCC Ser Asn	Thr Thr ACC Thr ACT Ile Asn AAC Val Asn AAC Leu Leu	Ile ATC Ile ATC Ile ATC Ile ATC Ile Yal GTT Ile Trp	Arg CGA Arg CGA Asp GAC Asp GAC	Glu GAG Glu GAA Ser TCC Ser TCC Leu Leu	CGA 360 Val Val GTG Val GTG Ser AGC 400 His	Leu CTT Leu CTG Ile ATC Ile ATC	Arg Arg CCT Arg CST Gly GST Gly GGA Asn Asn AAT	Phe Leu CTC * Ile ATC Glu GAG Asp Glu GAG GSU GGU GGU	Phe TTTC Arg Arg AGG Phe TTT Leu Phe TTT Lys Lys AAG	Asn AAT Pro CCC Pro CCC Thr Ala GCT * Thr ACT Glu Glu	Value of the value	CGG Ser Ala CCC Ala GCT Asp GAC Asp GAC His His CAC	Pro CCT Pro CCC Lys Lys AAG Lys AAG Arg Gln CAG	Thr Met ATG Thr Met ATG Gly GGC Gly * Asp GAC Pro	CTC 370 Leu Leu CTC Thr ACA Thr ACA 410 Asp
rTAA rTDNA pAA hADNA bAA rTAA rTDNA pAA hADNA bAA rTAA rTDNA pAA hADNA bAA	GAG 351 Val Leu CTC Val Leu CTC 371 Ile ATC ATC ATC ASp Glu	Leu Leu CTG Leu * Met ATG Pro CCC Val Val	Leu CTG Leu CTG His CAC Wal Ile	Glu GAG Glu GAG Glu GAG Lys AAG Lys AAG Val	Tyr TACC Ala Ala GCC Ala GCC Ala GCC Ala GCC Ser Asn	Thr Thr ACC Thr ACT Ile Asn AAC Val Asn AAC Leu Leu	Ile ATC Ile ATC Ile ATC Ile ATC Ile Trp	Arg CGA Arg CGA Asp GAC Asp GAC	Glu GAG Glu GAA Ser TCC Ser TCC Leu Leu	CGA 360 Val Val GTG Val GTG Ser AGC 400 His	Leu CTT Leu CTG Ile ATC Ile ATC	Arg Arg CGT Gly GGT Gly GGA Asn Asn	Phe Leu CTC * Ile ATC Glu GAG Asp Glu GAG GSU GGU GGU	Phe TTC Arg AGG Arg AGG Phe Phe TTT Leu Phe TTT Lys Lys	Asn AAT Pro CCC Pro CCC Thr Ala GCT * Thr ACT Glu Glu	Value of the value	Ser Ala CCC Ala GCT Asp GAC Asp * Pro CCC His His	Pro CCT Pro CCC Lys Lys AAG Lys AAG Arg Gln CAG	Thr Met ATG Thr Met ATG Gly GGC Gly * Asp GAC Pro	CTC 370 Leu Leu CTC Thr ACA Thr ACA 410 Asp
rTAA rTDNA pAA hAA hADNA bAA rTAA rTDNA pAA hAA hADNA bAA rTAA rTDNA pAA hAA hADNA bAA pAA hAA hADNA bAA	GAG 351 Val Leu CTC Val Leu CTC 371 Ile ATC 391 Asp GAA Asp *	ATT Leu Leu CTG Leu * Met AIG Pro CCCC Pro CCCC Val GTT	CAC Leu Leu CTG Leu CTG His CAC His CAC His CAC Val	Glu Glu GAG Glu GAG GAG Lys AAG Lys AAG Lys AAG *	Tyr TAC Ala Ala GCC Ala GCC Ala GCC Ala Ala GCC Ser Asn AAT	Thr Thr ACC Thr ACT Ile Asn AAC Val Asn AAC	Ile ATC Ile ATC Ile ATC Ile Yal GTT Ile Val GTC Phe TTp TGG	Arg Arg CGA Arg CGA Asp GAC Asp GAC	AGC Glu Glu GAG Glu GAA Ser TCC Ser TCC Leu Leu CTG	CGA 360 Val Val GTG Val GTG 386 Ser AGC 400 His CAT	ACA Leu Leu CTT Leu CTG Ile ATC Ile ATC His His CAC	Arg Arg CCCA Arg CGT Gly GGT Gly GGA Asn Asn AAT Ser	ACT Phe Leu CTC * Ile ATC Glu GAG Asp Glu GAG Glu GAG	Phe TTTC Arg Arg AGG Arg AGG Phe Phe TTT Leu Phe TTT Lys Lys AAG Lys *	Asn AAT Pro Pro CCC Pro CCC Thr Ala GCT * Thr ACT Glu GAG	GAC Val Val GTG Val GTG Val GTG Tle Val GTG Trp Trp TrGG	CGG Ser Ala GCC Ala GCT Asp Asp GAC Asp * Pro CCC His His CAC Gln *	Ser TCT Pro CCT Pro CCC Lys Lys AAG Lys AAG Arg Gln CAG His	Thr Met ATG Thr Met ATG Gly GGC Gly * Asp GAC Pro CCG	CTC 370 Leu Leu CTC 390 Thr Thr ACA 410 Asp Asp GAT
rTAA rTDNA pAA hAA hAANA bAA rTAA rTDNA pAA hAADNA bAA rTAA rTDNA	GAG 351 Val Leu CTC Val Leu CTC 371 Ile ATC 391 Asp Glu GAAA His	ATT Leu Leu CTG Wet ATG Pro Pro CCC Pro CCC Val GTT Val	Leu Leu CTG Leu CTG His His CAC Vall Ile ATC * Val	Glu Glu GAG Glu GAG Glu GAG Lys AAG Lys AAG Val Ile ATC *	Tyr TAC Ala Ala GCC Ala GCC Ala Ala GCC Ala Ala Ala GCC Ala Ala Ala GCC Ala Ala Ala Ala GCC Ala Ala Ala Ala Ala Asn	Thr Thr ACC Thr ACT Ile Asn AAC Val Asn AAC Leu Leu CTG	Ile ATC Ile ATC Ile ATC Ile Yal GTT Ile Val GTC Trp	Arg CGA Arg CGA Asp GAC Asp GAC	AGC Glu Glu Glu GAA GAA Ser TCC Ser TCC Leu Leu CTG	CGA 360 Val Val GTG Val GTG Ser AGC 400 His CAT	Leu Leu CTT Leu CTG Ile ATC Ile ATC His His CAC	Arg Arg CGT Arg CGT Gly GGA Asn Asn Asn Asn AAT	ACT Phe Leu CTC * Ile ATC Glu Glu GAG GSG Glu GAG Glu GAG Glu GAG	Phe TTTC Arg Arg Acc Arg Acc Arg Acc Phe TTT Leu Phe TTT Lys Lys AAG Lys * Asn	Asn AAT Pro Pro CCC Pro CCG Thr Ala GCT * Thr ACT Glu Glu GAG	Val Val GTG Val GTG Ile Val GTC Trp Trp TGG	CGG Ser Ala CCC Ala GCT Asp Asp GAC Asp * Pro CCC His GCG CAC GAC Asp	Pro CCT Pro CCC Lys Lys AAG Arg Gln CAG His *	Thr Met ATG Thr Met ATG Ala Gly GGC Gly * Asp GAC Pro Pro	CTC 370 Leu Leu CTC 390 Thr Thr ACA 410 Asp Asp
PAA hADNA bAA rTAA rTDNA pAA hADNA bAA rTAA rTDNA pAA hADNA bAA rTAA rTDNA pAA hADNA bAA rTAA rTDNA	GAG 351 Val Leu CTC Val Leu CTC 371 Ile ATC 391 Asp Glu GAAA His	ATT Leu Leu CTG Wet ATG Pro Pro CCC Pro CCC Val GTT Val	Leu Leu CTG Leu CTG His His CAC Vall Ile ATC * Val	Glu Glu GAG Glu GAG Glu GAG Lys AAG Lys AAG Val Ile ATC *	Tyr TAC Ala Ala GCC Ala GCC Ala Ala GCC Ala Ala Ala GCC Ala Ala Ala GCC Ala Ala Ala Ala GCC Ala Ala Ala Ala Ala Asn	Thr Thr ACC Thr ACT Ile Asn AAC Val Asn AAC Leu Leu CTG	Ile ATC Ile ATC Ile ATC Ile Yal GTT Ile Val GTC Trp	Arg Arg CGA Arg CGA Asp GAC Asp GAC Asp GAC Ala Ala GCG	AGC Glu Glu Glu GAA GAA Ser TCC Ser TCC Leu Leu CTG	CGA 360 Val Val GTG Val GTG Ser AGC 400 His CAT	Leu Leu CTT Leu CTG Ile ATC Ile ATC His His CAC	Arg Arg CGT Arg CGT Gly GGA Asn Asn Asn Asn AAT	ACT Phe Leu CTC * Ile ATC Glu Glu GAG GSG Glu GAG Glu GAG Glu GAG	Phe TTTC Arg Arg Acc Arg Acc Arg Acc Phe TTT Leu Phe TTT Lys Lys AAG Lys * Asn	Asn AAT Pro Pro CCC Pro CCG Thr Ala GCT * Thr ACT Glu Glu GAG	Val Val GTG Val GTG Ile Val GTC Trp Trp TGG	CGG Ser Ala CCC Ala GCT Asp Asp GAC Asp * Pro CCC His GCG CAC GAC Asp	Pro CCT Pro CCC Lys Lys AAG Arg Gln CAG His *	Thr Met ATG Thr Met ATG Ala Gly GGC Gly * Asp GAC Pro Pro	CTC 370 Leu Leu CTC 390 Thr Thr ACA 410 Asp Asp

Fig. 2. $P-450_{17\alpha}$ amino acid sequences: hAA= derived from human adrenal cDNA (14,15), rTAA= derived from rat testes cDNA (this study) and bAA=bovine aminoacids (16) that differ from the rat sequence. $P-450_{17\alpha}$ nucleotide sequences: rTDNA=rat cDNA, hADNA= human adrenal cDNA.* represents rat testes amino acids that differ from human residues. Underlined segments represent the conserved peptide region and heme region termination codon and polyadenylation.

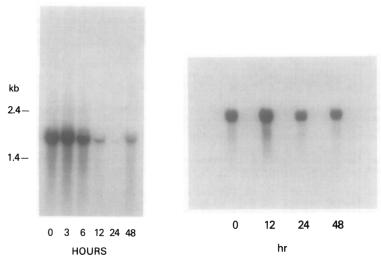

	411								420										430
pAA	Leu Phe																		
hAA	Gln Phe																		
hADNA	CAG TTC	ATC	CCT	GAG	CCT	TTC	TTG	AAT	CCA	CCC	CCC			CTC	ATC	_	CCG		
bAA	Leu											Thr	G1n			Ser		Ser	Leu
								*		*		*	*			*		*	*
rTAA	Gln Phe																		
rTDNA	CAG TTC	ATG	CCL	GAA	CGC	TTC	TTA	GAT		A CG	GGA	AGC	CAT	crc	ATT	A CA	ccc	A CG	
n 4 A	431 Ser Tur	T Att	Dro	Pho	Clu	470	Clas	Dro	440	0	0	Va.1	C1	C1	Wa #	T	A 7 -	.	450
pAA hAA	Ser Tyr Ser Tyr																		
hADNA	AGC TAT																		
bAA					., 011							Val		0,10	Met	0.0	000	000	Ozto
															*				
rTAA	Ser Tyr																		
rTDNA	AGT TAC	TTG	ccc	TTC	GGA	GCT	GGT	ccc	CGA	TCC	TGC	ATC	GGA	GAG	GCT	CTG	GCC	CCT	CAG
	451		_						460										470
pAA	Glu Leu																		
hAA hADNA	Glu Leu																		
hADNA baa	GAG CTC	116	Leu	AIC		Ser		CIG	CIG	CAG	AGG	TTC	Asn	CTG		Tle		GAT	GAT
Unn			*	*	*	ne i	*						ASII		4 t	ite	*		
rTAA	Glu Leu	Phe	Val	Phe	Thr	Ala	Leu	Leu	Leu	Gln	Arg	Phe	Asp	Len	Asp	Val		Asp	Asp
rTDNA	GAG CTC	TTT	GTC	TTC	A CG	GCC	TTG	CTA	CTG	CAG	AGG	TTT	GAC	TTG	GAT	GTG	TCA	GAT	GAT
	471								480										490
pAA	Gly Gln	Leu	Pro	Cys	Leu	Val	Gly	Asn	Pro	Ser	Leu	Val	Leu	G1n	Ile	Asp	Pro	Phe	Lys
hAA	Gly Gln	Leu	Pro	Ser	Leu	Glu	Cly	Ile	pro	Lys	Val	Val	Phe	Leu	Ile	Asp	Ser	Phe	Lys
hADNA	GGG CAG	CTG	ccc		CTG	GAA	GCC					GTC			ATC	GAC	TCT	TTC	AAA
baa	Gly Lys			Ser *				His	Ala	Ser	Leu		Leu	Gln		Lys			
rTAA	Lys Gln	Lou	Pro		Lou	Cl.	C1		D=0	1	17 - 1	₹7 1	D1	т	71.	۸	*	DL -	T
rTDNA	AAA CAA																		
110	491	010	500,	000	CIG	ono	001	GMI	500	Ano	UIA	010	111	CLG	ALC	OAC	CCI	110	510
pAA	Val Lys	Ile	Lys	Glu	Arg	Gln	Ala	Tro		Glu	Ala	His	Thr	Glu	Glv	Ser	Thr	Ser	510
hAA	Val Lys																		
hADNA	GTG AAG	ATC	AAG	GTG	CCC	CAG	GCC	TGG	AGC	GAA	GCC	CAG	CCT	GAG	GGT	AGC	ACC	TAA	
baa			cla						Lys						Gly			Pro	
			*						*	*					*				
TTAA	Val Lys	Ile	Thr	Va1	Arg	Gln	Ala	Trp	Met	Asp	Ala	G1n	Ala	GIu	Val	Ser	Thr		
rTDNA	GTA AAG	ATC	ACG	GTG	CGC	CAG	GCA	TGG	ATG	GAT	GCA	CAG	GCT	GAG	GTT	ACC	ACC	TAG	AGG
rTDNA	CCA CAA C	CRACI	41 UC	LOGAT	CUCAT	AUUI	CAA	AUC	JA CAC	TACE	ATC	TAGA	GGT	CLYC	TCCC	AGTO	CCT	CTAC	;
	GGT CCT C	OT CCC	21 C()	ACCC	AITI	CTAG	TIGO	CAG	AAT		GIGA	TACA	CATA	LAATT	AAAC	TT			

Fig. 2 - Continued.

TABLE 1. SEQUENCE SIMILARITY OF RAT P-450 $_{17\alpha}$ cDNA FRAGMENT WITH HUMAN, BOVINE AND PORCINE P450 $_{17\alpha}$

		Percent Similarity						
	Parameter	Human ^a	Bovinea	Porcineb				
1)	Nucleotide							
,	overall similarity	79	73					
	heme*	83	81					
	conserved peptide region**	80	78					
2)	Amino Acid							
	overall similarity	75	68	66				
	heme*	95	90	90				
	conserved peptide region**	83	83	74				

a Amino acids derived from nucleotide sequence analyses (14,15,16) and b from peptide sequence (14) % similarity is defined as (100 - # mismatches) /100. There are no gaps in the region depicted in Fig 2 as verified by Wilbur-Lipman computer alignment using PC/gene (Intelligenetics, Inc., Mountain View, CA) (23). Amino acid position: *453-473 **346-368 (see Fig. 2).

<u>Fig. 3.</u> (Left) Time study of regulation of P-450_{17 α} mRNA levels in adult Leydig cells by a desensitizing dose of hCG (10 μ g). Poly (A)⁺ RNA (10 μ g) were electrophoresed on 1% agarose/glyoxal gel. The RNA was transferred in Fig. 1 to nylon filter, hybridized to nick translated rat P-450_{17 α} cDNA probe as described in Fig. 1. (Right) Time study of regulation of P-450_{17 α} mRNA levels in adult Leydig cells by a non-desensitizing dose of hCG (0.2 μ g). These are representative results of 4 experiments.

increase in mRNA beyond the 12 h time point could be reflective of some degree of desensitization even at the lower dose. This may somewhat dampen the effect of the gonadotropin treatment on testosterone basal levels and subsequent responses to the acute hormonal stimulus in vitro. The corresponding testosterone production showed a two-fold increase in basal testosterone production at 12 hr and a decrease at later times to slightly above control levels (not shown). This early increase in basal steroidogenic levels could be related in part to the observed increase in P-450_{17\alpha} mRNA.

Unlike the adult Leydig cell, the fetal and immature Leydig cells are refractory to this desensitizing process and maintain up-regulated LH receptors and steroidogenic function (9-12); their resistance to desensitization by gonadotropin is attributed to the absence of an estrogen-mediated regulation of the androgen pathway (10-12). E_2 treatment of functional Leydig cell cultures caused an estrogen-mediated inhibition of 17α hydroxylase/17-20 desmolase activities resembling that observed in gonadotropin desensitized adult cells (4,6,12). Estradiol treatment of fetal cultures for 6 days significantly reduced the levels of P-450_{17 α} mRNA (p<0.05) (Fig. 4-left), decrease of control and acute hCG stimulated testosterone production was observed at 3 and 6 days of culture. The estradiol effect was even more pronounced at 6 days when basal testosterone levels were undetectable and hCG stimulated levels were markedly reduced (Fig. 4-right). Accumulated testosterone production in the media over the 3 day culture period (see methods) demonstrated about 60% reduction of testosterone in the incubation media with the estradiol treatment (from 135 ± 7 ng/ml to 36 ± 6 ng/ml). This marked reduction of androgen by E_2 treatment is reflective of the inhibition of 17α -hydroxylase/17-20 desmolase activity (12) and is likely related to reduction on P-450_{17 α} mRNA content.

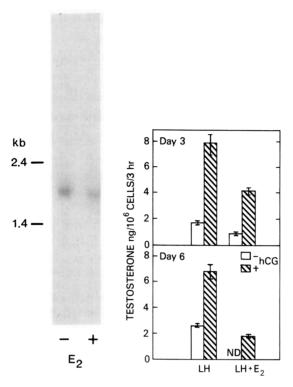


Fig. 4. (Left) E_2 regulation of P-450_{17 α} mRNA levels in fetal Leydig cells. Cells were plated at 1 x 10⁶ cells/well and treated by 1 μ g of oLH every third day in the absence of 17 β -estradiol (-), left, and in the presence of 600 ng of 17 β -estradiol added every day (+). On day seven total RNA were prepared from cell culture as described in methods. 20 μ g of total RNA were electrophoresed on 1% agarose/glyoxal gel, transferred to a nylon filter and hybridized to rat P450_{17 α} cDNA probe following conditions described in Fig. 1. (Right) The effect of E_2 on testosterone production by cultured fetal rat Leydig cells. Cells were treated with LH (1 μ g) or LH + E_2 . At day 3 and 6 after media change, cells were cultured in the presence or absence of hCG for an additional 3 h (acute stimulation). Testosterone was measured in the media. Points are the mean \pm SD (n=4). These are representative results of 3 experiments.

The temporal changes in P-450_{17 α} mRNA levels in response to gonadotropin followed the steroidogenic desensitization pattern previously described. The early increases in mRNA levels at all dose treatments are consistent with the early increase in steroidogenic activity observed in vivo and in vitro following the gonadotropin stimulus (2-4). Furthermore the marked decrease in mRNA levels induced by estradiol in fetal Leydig cells is consistent with our proposal of E₂ as an inducer of a regulatory function in steroidogenesis, perhaps at the transcriptional level. That the changes in P-450_{17 α} are specific were demonstrated by the finding that actin mRNA levels were not significantly changed by the treatments (not shown) and the absence of P-450_{17 α} mRNA in rat adrenal (Fig. 1) and spleen (not shown). It is of interest that at the lower dose (0.2 μ g) the initial stimulation observed was not sustained. It is likely that lower doses of gonadotropin will provide exclusively a stimulatory pattern.

Characterization of the cDNA insert complementary to rat $P-450_{17\alpha}$ has shown a high degree of homology with the $P-450_{17\alpha}$ of other species and predominantly with the human (14,15), indicating conservation during evolution. The isolated insert containing the

conserved regions and the 3' end of the cDNA has permitted us to determine the levels of mRNA P-450_{17 α} in the rat. Results demonstrated an early modest stimulation of mRNA by hCG treatment and marked reductions during gonadotropin and estradiol desensitization.

Further studies will be focused on determining whether $P-450_{17\alpha}$ mRNA levels during hormone exposure are the consequence of transcriptional rate changes or mRNA degradation. Elucidation of the $P-450_{17\alpha}$ genomic structure would allow us to determine the presence of regulatory sequences related to gonadotropin action of the Leydig cell.

ACKNOWLEDGEMENT: We are grateful for helpful discussions and advice from the late Dr. Howard Eisen during the initial stages of this work.

REFERENCES

- 1. Dufau, M.L., and Catt, K.J. (1978) Vitam. Horm. (NY) 36, 461-600
- Tsuruhara, T., Dufau, M.L., Cigorraga, S., and Catt, K.J. (1977) J. Biol. Chem. 252, 9002-9009
- 3. Cigorraga, S.B., Dufau, M.L., and Catt, K.J. (1978) J. Biol. Chem. 253, 4297-4304
- 4. Nozu, K., Matsurra, S., Catt, K.J., and Dufau, M.L. (1981) J. Biol. Chem. 256, 10012-10017
- 5. Tsai-Morris, C.-H., Aquilano, D.R., and Dufau, M.L. (1985) 116, 31-37
- Nozu, K., Dehejia, A., Zawistowich, L, Catt, K.J., and Dufau, M.L (1981) J. Biol. Chem. 258, 12875-12882
- 7. Ciocca, D.R., and Dufau, M.L. (1984) Science 226, 115-116
- 8. Ciocca, D.R., Winters, C.A., and Dufau, M.L. (1986) J. Steroid Biochem. 24, 219-229
- 9. Warren, D.W., Dufau, M.L., and Catt, K.J. (1982) Science 218, 375-377
- Huhtaniemi, I.T., Nozu, K., Warren, D.W., Dufau, M.L., and Catt, K.J. (1982) Endocrinology 111, 1711-1720
- 11. Tsai-Morris, C.-H., Aquilano, D.R., and Dufau, M.L. (1985) Endocrinology 116, 38-46
- Tsai-Morris, C.-H., Knox, G., Luna, S., and Dufau, M.L. (1986) J. Biol. Chem. 261, 3471-3474
- Nebert, D.W., Adesnik, M., Coon, M.J., Estabrook, R.W., Gonzales, F.J., Guengerich, F.P., Gunsalus, I.C., Johnson, E.F., Kemper, B., Levin, W., Phillips, I.R., Sato, R. and Waterman, M.R. (1987) DNA 6, 1-11
- Chung, B-C, Picado-Leonard, J., Haniu, M., Bienkowski, M., Hall, P.F., Shively, J.E., and Miller, W.L. (1986) Proc. Natl. Acad. Sci. 84, 407-411
- Bradshaw, K.D., Waterman, M.R., Couch, T.R., Simpson, E.R., and Zuber, M.X. (1987) Mol. Endo. 1, 348-353
- Zuber, M.X., John, M.E., Okamura, T., Simpson, E.R., and Waterman, M.R. (1986) J. Biol. Chem. 261, 2375-2482
- 17. Aquilano, D.R., and Dufau, M.L. (1984) Endocrinology 114, 470-476
- Chirgwin, J.M., Prgybyla, A.E., MacDonald, R.J. and Rutter, W.I. (1979) Biochemistry 18, 5294-5299
- Maniatis, T., Fritsch, E.F., and Sambrook, J.F. (1982) Molecular Cloning: A Laboratory Manual, (Cold Spring Harbor Laboratory, New York)
- 20. Church, G.M., and Gilbert, W. (1984) Proc. Natl. Acad. Sci. USA 81, 1991-1995
- 21. Kimura, S., Gonzalez, F.J., and Nebert, D.W. (1986) Mol. Cell. Biol. 6, 1471-1474
- Sanger, F., Nicklen, S., and Coulson, A.R. (1977) Proc. Natl. Acad. Sci. USA 74, 5463-5467
- 23. Wilbur, W.J., and Lipman, D.J. (1983) Proc. Natl. Acad. Sci. 80, 726-731
- 24. Ozols, J., and Heinemann, F.S. (1981) J. Biol. Chem. 256, 11405-11408